Image fusion and unsupervised joint segmentation using a HMM and MCMC algorithms
نویسندگان
چکیده
In this paper we propose a Bayesian framework for unsupervised image fusion and joint segmentation. More specifically we consider the case where we have observed images of the same object through different imaging processes or through different spectral bands (multi or hyper spectral images). The objective of this work is then to propose a coherent approach to combine these images and obtain a joint segmentation which can be considered as the fusion result of these observations. The proposed approach is based on a Hidden Markov Modeling (HMM) of the images where the hidden variables represent the common classification or segmentation labels. These label variables are modeled by the Potts Markov Random Field (PMRF). We propose two particular models for the pixels in each segment (iid. or Markovian) and develop appropriate Markov Chain Monte Carlo (MCMC) algo1 rithms for their implementations. Finally we present some simulation results to show the relative performances of these models and mention the potential applications of the proposed methods in medical imaging and survey and security imaging systems. key words : Data fusion, Segmentation, Markov random field, multi spectral images, HMM, MCMC, Gibbs sampling.
منابع مشابه
A hidden Markov Model for image fusion and their joint segmentation in medical image computing
In this work we propose a Bayesian framework for fully automated image fusion and their joint segmentation. More specifically, we consider the case where we have observed images of the same object through different image processes or through different spectral bands. The objective of this work is then to propose a coherent approach to combine these data sets and obtain a segmented image which c...
متن کاملPlant Classification in Images of Natural Scenes Using Segmentations Fusion
This paper presents a novel approach to automatic classifying and identifying of tree leaves using image segmentation fusion. With the development of mobile devices and remote access, automatic plant identification in images taken in natural scenes has received much attention. Image segmentation plays a key role in most plant identification methods, especially in complex background images. Wher...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملExtraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images
Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Electronic Imaging
دوره 14 شماره
صفحات -
تاریخ انتشار 2005